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Abstract— This paper proposes a robust model predictive
control scheme for nonlinear systems with state and input
constraints and unknown but bounded disturbances. A stan-
dard nominal model predictive control problem with tightened
constraints is solved online, and its solution defines the nominal
trajectory. An ancillary control law is determined off-line which
keeps the trajectories of the error system in a disturbance
invariant set. Thus, the evolution of original nonlinear system
lies in the disturbance invariant set centered along the nom-
inal trajectory. Furthermore, it is shown that both feasibility
and stability of the closed-loop system are guaranteed if the
standard nominal optimization problem is initially feasible.

I. INTRODUCTION

Model predictive control (MPC) or receding horizon con-

trol (RHC) is a class of optimization based control methods

in which a control sequence is determined by optimizing

a finite horizon cost at each sampling instant, based on

an explicit process model and state measurement. The first

control action of the optimal sequence is applied to the

plant. At the next sampling instant, the optimization problem

is solved again using new measurements, and the control

input is updated. Due to its ability to handle constraints on

inputs and states, this control method has received much

interest in both academic community and industrial society

over the last 30 years [1, 2]. By introducing a so-called

stability constraint and appropriately computing a terminal

penalty term, nominal stability issues are well-addressed [1,

3]. Although it has been proven that an MPC controller

inherently has some degree of robustness [4–6], uncertainties

in the process model can destabilize a system with nominally

asymptotically stable MPC controller [7, 8].

In order to achieve robustness, the controller must stabilize

the system for all possible realizations of the uncertainty.

An intuitive way is to solve a min-max optimization prob-

lem online when disturbances and/or model mismatch are

present [9–13]. In general, these schemes are computation-

ally intractable since the size of the optimization problem

required for their solution grows exponentially with the in-

crease of the prediction horizon [10]. The constraint tighten-

ing approach, which is introduced in [7, 14, 15], avoids com-

putational complexity by using a nominal prediction model

and modifying the constraint sets to achieve robustness.

However, the constraint sets will shrink drastically because

the “margin”, which retains in each optimization for the
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impact of uncertainty on the actual system, will increase with

the prolonging of the prediction horizon. For linear discrete-

time systems with persistent disturbances, [16] provides a

new constraint tightening, tubed based robust MPC scheme,

which demonstrates the reduction of online computational

burden while the constraint sets are not shrinking drasti-

cally. The algorithm utilizes both feedback control law and

feedforward control action. The state feedback control law

is designed offline as a nominally stabilizing control policy,

which keeps the evolution of the constrained systems in a

disturbance invariant set. The feedforward control action is

calculated online and steers the nominal system states to the

equilibrium. However, the shape of the minimal disturbance

invariant set is not a priori known. The results proposed

in [16] depend on the linearity property of the considered

system class, and have been extended in [17] to some classes

of nonlinear discrete-time systems, namely systems with

matched nonlinearity and a particular class of piecewise

affine systems. The result relies on a parameterized feedback

control policy which transforms the considered systems to

linear systems.

In this paper we use feedback and feedforward compo-

nents similar to [16, 17] and propose a robust model predic-

tive controller for general nonlinear systems with persistent

disturbances. The result relies on the offline calculation of

a robustly stabilizing ancillary control law for nonlinear

systems, and a convex, disturbance invariant set chosen to

be an ellipsoid. The feedforward control action, calculated

repeatedly online, generates a nominal trajectory. The pre-

determined ancillary control law keeps all admissible trajec-

tories of the uncertain systems in the disturbance invariant set

(i.e., in the ellipsoid) centered around the nominal trajectory.

The remainder of the paper is organized as follows.

Section 2 defines the problem statement. Section 3 presents

the main results, including the construction of a robust

invariant set and the calculation of the ancillary control law.

The proposed scheme is proven to be robustly stable and

feasible. In Section 4, a simulation example is provided

to demonstrate the effectiveness of the proposed scheme.

Section 5 concludes the paper with a brief summary.

II. PROBLEM SETUP

Consider a system described by a nonlinear ordinary

differential equation with bounded disturbances:

ẋ(t) = f
(

x(t), u(t), w(t)
)

, (1)

where x(t) ∈ R
n is the state of the system and u(t) ∈ R

m

is the control input. The signal w(t) ∈ R
p is the exogenous
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disturbance or uncertainty, lying in the compact set

W = {w(t) ∈ R
p| ‖ w(t) ‖∞≤ wmax},

which contains the origin, i.e. w(t) ∈ W, ∀t ≥ 0. The system

is subject to constraints on both state and input given by

x(t) ∈ X, u(t) ∈ U ∀t ≥ 0, (2)

where X and U are compact sets containing the origin. Some

fundamental assumptions are stated in the following:

Assumption 1: A0) f(x, u, w) : X × U → R
n is con-

tinuously differential for x, u and w. Furthermore,

f(0, 0, 0) = 0, thus 0 ∈ R
n is an equilibrium of the

system.

A1) System (1) has a unique solution for any initial condi-

tion x0 ∈ X and any piecewise right-continuous input

function u(·) : [0, Tp] −→ U and w(·) : [0, Tp] −→ W;

A2) U ⊂ R
m is compact, X ⊆ R

n is connected and the

point (0, 0, 0) is contained in the interior of X × U.

For the nominal system, we have w(t) = 0. Thus, it is

described by
˙̄x(t) = f

(

x̄(t), ū(t), 0
)

. (3)

For simplification we denote (3) as ˙̄x(t) = f
(

x̄(t), ū(t)
)

.

The error between the actual and nominal state defined as

v = x − x̄, hence satisfies

v̇ = f(x, u, w) − f(x̄, ū). (4)

In the following we use for (4) the expression error system.

We will design a control signal with both nominal controller

and pre-derived feedback terms as follows:

u = ū + π(x − x̄), (5)

where π(·) : R
n → R

m is a control law, linear or nonlinear.

The nominal controller ū is obtained by the solution of

nominal optimal control problem with tightened constraints.

We use the nominal control to generate a nominal trajectory,

and the ancillary control law π(x − x̄) to keep all solutions

of the error system (4) in an invariant set centered on the

nominal trajectory.

Before proceeding with the main results of the paper it is

necessary to define the concept of robust control invariant

sets and some set operations [18].

Definition 1: (Robust control invariant set) The set Ω ⊂
R

n is a robust control invariant set for the error system (4)

if and only if there exists a feedback control law u = κ(x)
such that ∀v(t0) ∈ Ω and ∀w ∈ W, the trajectories v(t)
remain in Ω for all t ≥ 0.

Definition 2: Consider two sets A,B ⊂ R
n, then the

Pontryagin difference set is defined as

A ∼ B =
{

x ∈ R
n| x + y ∈ A, ∀y ∈ B

}

,

Similarly, the addition set is defined as

A⊕ B =
{

x + y|x ∈ A, x ∈ B,
}

.

Definition 3: The multiplication of a set B by a matrix A
denotes a mapping of all its elements

AB =
{

c| ∃b ∈ B, c = Ab
}

,

III. ROBUST MODEL PREDICTIVE CONTROLLER

In this section we present a robust model predictive

controller for nonlinear systems that has two components: a

nominal controller that generates a nominal open-loop con-

trol input and a nominal state trajectory (calculated online)

and the ancillary control law K (calculated offline) which

aims at steering the trajectories of the error system (4) to

the origin, i.e. the trajectory of system (1) to the nominal

trajectories.

A. Nominal control input

The nominal open-loop optimal control problem is subject

to the nominal dynamics (3), i.e. no disturbances are present.

Furthermore, it is subject to tighter constraints than the

original constraints introduced in (2) in order to guarantee

satisfaction of the original constraints. As in [16], the model

predictive controller we proposed is based on the repeated

online solution of an optimal control problem in which the

initial state of the nominal model is a decision variable.

For the current state x(tk), the nominal control problem

which is solved online is formulated as follows:

P(x) : min
x̄(tk),ū(·)

J
(

x̄(tk), ū(·)
)

, (6)

subject to

˙̄x = f(x̄, ū), (7a)

x(tk) − x̄(tk) ∈ Ω, (7b)

x̄
(

tk + τ ; x̄(tk), tk
)

∈ X0, τ ∈ [0, Tp], (7c)

ū
(

tk + τ ; x̄(t), tk
)

∈ U0, τ ∈ [0, Tp], (7d)

x̄
(

tk + Tp; x̄(tk), tk
)

∈ Xf , (7e)

where X0
.
= X ∼ Ω, U0

.
= U ∼ KΩ, Xf ⊂ X ∼ Ω, and

J(x̄(tk), ū(·))=

∫ tk+Tp

tk

x̄T
(

τ ; x̄(tk), tk
)

Qx̄
(

τ ; x̄(tk), tk
)

(8)

+ūT
(

τ ; x̄(tk), tk
)

Rū
(

τ ; x̄(tk), tk
)

dτ + F
(

x̄(tk + Tp)
)

.

Here Tp is the prediction horizon, Q ∈ R
n×n and R ∈ R

m×n

are positive definite weighting matrices. The set Ω is a

disturbance invariant set for the error system which will be

introduced in detail later. The pair
(

x̄∗(tk), ū∗(·)
)

denotes

the optimal solution to the open-loop optimal control prob-

lem P(x), and x̄∗
(

·; x̄∗(tk), tk
)

is the predicted trajectory of

(3) starting from the state x̄∗(tk) at time tk and driven by a

given open-loop input function ū∗
(

·; x̄∗(tk), tk
)

.

The applied nominal control input is defined as

ū(τ) = ū∗
(

τ ; x̄∗(tk), tk
)

, τ ∈ [tk, tk + δ), (9)

The set Xf is a neighborhood of the origin which is a level

set of a positive definite function F (·). Moreover, Xf and

F (x) satisfy the following terminal conditions [3, 19]:

B0) Xf ⊆ X0,

B1) κ(x̄) ∈ U0, for all x̄ ∈ Xf ,

B2) F (x) satisfies inequality,

∂F (x)

∂x
f
(

x̄, κ(x̄)
)

+x̄T Qx̄+κ(x̄)T Rκ(x̄) ≤ 0, ∀x̄ ∈ Xf (10)
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where ū = κ(x̄) is a feasible control law.

We assume that for the nominal system (3), there exists

a locally asymptotically stabilizing controller ū = κ(x̄), a

terminal region Xf and a continuously differentiable, positive

definite function F (x̄) that satisfy (10) for ∀x̄ ∈ Xf [3].

Since (10) holds, Xf is invariant for the nominal system

(3) controlled by u = κ(x). It is well-known that MPC

stabilizes the nominal system [1, 3] if the terminal conditions

B0-B2 are satisfied. Furthermore, the optimal value function

J∗ satisfies:

J∗(x̄(t + δ; x̄(t), t)) − J∗(x̄(t))

≤ −x̄(t)T Qx̄(t) − ū(t)T Rū(t), (11)

where δ = tk+1 − tk.

B. Disturbance invariance of nonlinear systems

In this subsection, we present a general result of dis-

turbance invariance of nonlinear systems, which will be

required for further consideration.

Lemma 1: Suppose there exists E
(

v(t)
)

≥ 0, λ > 0 and

µ > 0 such that

d

dt
E

(

v(t)
)

+ λE
(

v(t)
)

− µwT (t)w(t) ≤ 0. (12)

Then, the system trajectory starting from v(t0) ∈ Ω(v) will

remain in Ω(v), where

Ω(v) :=
{

v|E(v(t)) ≤
µw2

max

λ

}

. (13)

Proof: Multiplying (12) by the eλt yields

d

dt

(

eλtE
(

v(t)
)

)

≤ µeλtwT (t)w(t). (14)

Integrating (14) from t0 to t leads to

E
(

v(t)
)

≤ e−λ(t−t0)E
(

v(t0)
)

+µe−λt

∫ t

t0

eλswT (s)w(s)ds.

Due to ‖w‖∞ ≤ wmax, we have

E
(

v(t)
)

≤ e−λ(t−t0)E
(

v(t0)
)

+ µw2
maxe−λt

∫ t

t0

eλsds

= e−λ(t−t0)
(

E
(

v(t0)
)

−
µw2

max

λ

)

+
µw2

max

λ
.

In virtue of v(t0) ∈ Ω(v), we have E
(

v(t)
)

≤
µw2

max

λ
for

all t ≥ t0. 2

Remark 3.1: For linear systems ẋ = Ax, or linear se-

lectionable differential inclusions ẋ ∈ A(x) where A(x) =
{v|v = Cx, C ∈ C} and C ⊂ R

n×n is a convex set, asymp-

totic stability of the origin is equivalent to the existence of a

piecewise linear positive definite function S(x) and a positive

scalar λ which satisfy the inequality Ṡ(x) + λS(x) ≤ 0 for

the matrix A or the linear selectionable differential inclusion

A(x), respectively [20].

Remark 3.2: Condition (12) shows that, if E(v), λ and

µ exist, the error system (4) is exponentially stable with

the decay rate λ in the case of vanishing disturbance

limt→∞ w(t) = 0

If E(·) is a control Lyapunov function, we can find a

control law by solving inequality (12), which guarantees

that the nonlinear system stays in the set Ω, if the initial

state of the system lies in this set. In general, for nonlinear

systems, it is hard to find a control Lyapunov function E(·)
and an associated control law such that (12) is satisfied.

In the next subsecion we provide sufficient (and therefore

conservative) conditions for the calculation of a quadratic

control Lyapunov function E(x) = xT Px and an ancillary

linear feedback controller u = Kx. Note that the ancillary

control law is calculated offline.

C. Case study: a static ancillary control law

Suppose that for all x ∈ X0, u ∈ U0 and w ∈ W

there exists a matrix G(x, u, w) ∈ Σ such that f(x, u, w) =

G(x, u, w)
[

x u w
]T

, where Σ ⊆ R
(n+m+p) is a poly-

topic linear differential inclusion (PLDI) of the nonlinear

system (1):

Σ = Co
{[

A1 B1 Bw1

]

, . . . ,
[

AL BL BwL

]}

. (16)

Here,
[

Ai Bi Bwi

]

, i = 1, 2, . . . , L, are vertex matrices

of the set Σ, and L is the number of vertex matrices. Condi-

tions that guarantee existence of the differential inclusion are

f(0, 0, 0) = 0 and
[

∂f
∂x

∂f
∂u

∂f
∂w

]

∈ Σ for all x, u, w, see

e.g. [21]. If we can show that the PLDI has some property,

then this property also holds for the nonlinear system [21].

Remark 3.3: The nonlinear system (1) and the error sys-

tem (4) have the same PLDI for ∀x ∈ X0, u ∈ U0 and

w ∈ W.

Lemma 2: Suppose that there exist matrices 0 < X ∈
R

n×n and Y ∈ R
m×n, scalars λ > 0 and µ > 0 such that

[

(AiX + BiY )T + AiX + BiY + λX Bwi

∗ −µI

]

≤ 0, (17)

i = 1, · · · , L.

where ∗ denotes a submatrix required to enforce symmetry.

Then, with u′ = Kv and E(v) = vT Pv, where P =
X−1 and K = Y X−1, Lemma 1 is satisfied for the error

system (4).

Proof: Pre-and post-multiplying (17) by diag(P, I) yields
[

(Ai + BiK)T P + P (Ai + BiK) + λP PBwi

∗ −µI

]

≤ 0,

which using the Schur complement implies that d
dt

(vT Pv)+
λvT Pv − µwT w ≤ 0. Therefore, Lemma 1, holds for the

error system (4), ∀(x̄, ū, w) ∈ X0 × U0 × W. 2

Strictly speaking, we should know a priori the sets X0 and

U0 since those sets are required to determine the PLDI (16).

However both X0 and U0 depend on the set Ω. This is clearly

a contradiction. Therefore, we propose an iterative algorithm

for the solution of inequality (17).

Algorithm 1: Step 1. For fixed λ, given X0 ∈ X and U0 ∈
U, solve inequality (17) and get K and Ω.

Step 2. If Ω ∈ X ∼ X0, and KΩ ∈ U ∼ U0, stop; otherwise

set X0 = X0 − ρX0 ∈ X and U0 = U0 − ρU0 ∈ U, where

0 < ρ < 1, go to step 1.
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Assumption 2: Suppose that inequality (17) has a feasible

solution such that Ω lies in the interior of X and KΩ lies in

the interior of U.

Remark 3.4: Clearly, from (13) we know that the choice

of a larger λ leads to a smaller volume of the disturbance

invariant set and a larger decay rate of the closed-loop

system, which implies better control performance. On the

other hand, it follows from (17) that the choice of a larger

λ leads to a smaller set of feasible solutions (µ, X, Y ). This

contradiction motivates us to choose λ as the “almost” largest

one which can guarantee the LMI optimization problem to

be feasible.

Remark 3.5: As with all differential inclusions schemes

for nonlinear control problems, some conservativeness is

introduced which shows a potential weakness of the proposed

method.

D. Feasibility and stability

Since the disturbances are bounded but not necessarily

decaying, the origin is not a steady state of the uncertain

system. Hence, the aim of a stabilizing controller is to steer

the state to a neighborhood of the origin and to keep the

state within it. The set has to be a robust positive invariant

set for the closed-loop system and its size depends on the

bound on the disturbances. This section proves that for any

feasible initial state, the proposed predictive controller steers

system (1) to the disturbance invariant set around the origin

and remains there for all times.

Due to the repeated solution of the optimal control prob-

lem P(x), we first deduce its feasibility at each time instant.

Theorem 1: (Robust feasibility) Suppose that the optimal

control problem P
(

x(t0)
)

is feasible at time t0 = 0. Then,

for a sufficiently small sampling time δ > 0, it is feasible

for any t ≥ t0 .

Proof: Assume that at time instant t0, the problem

P
(

x(t0)
)

is feasible and its solution is the nominal ini-

tial state x̄∗
(

t0; x(t0), t0
)

and the nominal control input

ū∗
(

·; x(t0), t0
)

. Since x(t0) ∈ x̄∗(t0)⊕Ω, it follows from the

disturbance invariance property of Ω that for system (4) with

ancillary control law π(·), x(t0+δ) ∈ x̄∗
(

t0+δ; x(t0), t0
)

⊕
Ω. Consider the candidate control action

ū0(τ) =

{

ū∗
(

·; x(t0), t0
)

τ ∈ [t0 + δ, t0 + Tp],
κ
(

x̄∗(·)
)

τ ∈ [t0 + Tp, t0 + Tp + δ].

The nominal state trajectory associated with ū0(τ) is

x̄0(τ)=

{

x̄∗
(

·; x(t0), t0
)

τ ∈ [t0 + δ, t0 + Tp],
x̄
(

·; x̄∗(t0 + Tp), t0 + Tp

)

τ ∈ [t0+Tp,t0+Tp+δ],

where x̄
(

·; x̄∗(t0 + Tp), t0 + Tp

)

is the system evolution

with the control input κ
(

x̄∗(·)
)

and the initial state x̄∗(t0 +
Tp; x(t0), t0). Since

(

x̄∗(·; x(t0), t0), ū
∗(·; x(t0), t0)

)

is fea-

sible for P
(

x(t0)
)

, constraints (7c)-(7e) are satisfied. Hence,

constraints (7c) and (7d) are satisfied by x̄0(τ) and ū0(τ) in

the interval [t+ δ, t+Tp]. Since x̄
(

·; x̄∗(t0 +Tp), t0 +Tp

)

∈
Xf , it follows from B0)-B2) that the terminal control law

κ
(

x̄(·; x̄∗(t0 + Tp), t0 + Tp)
)

∈ U0 renders the set Xf

invariant. Hence, κ
(

x̄(·; x̄∗(t0 +Tp), t0 +Tp)
)

∈ U0 satisfies

the constraints (7d) and x̄
(

·; x̄∗(t0 + Tp), t0 + Tp

)

satisfies

(7c), ∀τ ∈ [t0 + Tp, t0 + Tp + δ]. Since x(t0 + δ) ∈
x̄∗

(

t0 + δ; x(t0), t0
)

⊕ Ω, the pair
(

x̄0(τ), ū0(τ)
)

is a

feasible solution to P
(

x∗(t0 + δ)
)

. Furthermore, due to the

disturbance invariance property of Ω and the feasibility of

P(x̄), system (1) controlled by the proposed scheme robustly

satisfies the constraints (2). 2

Let us define the candidate Lyapunov function

V (x) = J(x̄∗). (18)

which is the optimal value function () The following result

shows the properties of the candidate Lyapunov function for

system (1) under the proposed model predictive control law.

Lemma 3: (i) 0 ≤ V (x) < +∞,

(ii) V (x) = 0, for all x ∈ Ω,

(iii) V
(

x(t+δ)
)

−V (x(t)) ≤ −x̄∗(t)T Qx̄∗(t)−ū∗(t)T Rū∗(t)

Proof: (i) follows directly from the definition of V (·).

(ii) Let x(t) be an arbitrary point in Ω. Since x(t) ∈ 0⊕Ω,

it follows that x̄(t)∗ = 0 and ū0(τ) = 0, ∀τ ≥ t, is

a feasible solution to the optimization problem P
(

x(t0)
)

.

Hence V (x) ≤ J(0) = 0, which establishes the result.

(iii) Note that x(t + δ) ∈ x̄∗
(

t + δ; x(t), t
)

⊕ Ω such that
(

x̄0(τ), ū0(τ)
)

is feasible for x(t + δ). Hence, V
(

x(t +
δ)

)

≤ J
(

x̄∗(t+δ; x(t), t)
)

. Furthermore, from (11) J
(

x̄∗(t+
δ; x(t), t)

)

− J
(

x̄∗(t)
)

≤ −x̄∗(t)T Qx̄∗(t) − ū∗(t)T Rū∗(t).
Since V (x(t)) = J

(

x̄∗(t)
)

, the proposition follows. 2

Definition 4: A system is asymptotically ultimately

bounded if the system converges asymptotically to a bounded

set [22].

In the following theorem we show that for any feasible

initial state, the proposed controller steers system (1) to the

disturbance invariant set around origin and remains there

for all times. Hence, the system under control is ultimately

bounded. Firstly, we proof that Ω is attractive for system

(1) under the disturbance w ∈ W. Then, we show that the

controlled system remains there.

Theorem 2: Suppose that Assumptions 1 and 2 are satis-

fied, and the optimal control problem P
(

x(t0)
)

is feasible at

time t = 0. Then, for a sufficient small sampling time δ > 0,

system (1) is asymptotically ultimately bounded.

Proof: (i) Given ε > 0, choose r ∈ (0, ε] such that Br :=
{

x ∈ Rn, x /∈ Ω|‖x − y‖ ≤ r, ∀y ∈ Ω̄
}

is a neighborhood

of the set Ω, where Ω̄ = {xT Px =
µw2

max

µ
}. Due to the

continuity of V (x) and V (x) > 0 for all x /∈ Ω, there exists

a β ∈ (0,∞) such that β < min‖x−y‖=rV (x) for ∀y ∈ Ω̄.

Define Wβ := {x ∈ Br|V (x) ≤ β}, then Wβ is entirely

contained in the interior of Br.

(ii) Furthermore, for all x(t0) ∈ X0, there exists a finite

time T such that x(T ) ∈ Wβ . This can be proven by

contradiction: Assume that x(t) /∈ Wβ for all t > T . It
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follows that for all t ≥ T

V
(

x(t + δ)
)

− V
(

x(t)
)

≤ −
∫ t+δ

t
‖x̄(τ)T Qx̄(τ)‖dτ

≤ −δ inf
{

‖x̄T Qx̄|x̄ /∈ Wβ‖
}

≤ −δγ

where x ∈ x̄ ⊕ Ω and γ > 0. By induction, V
(

x(t + δ)
)

→
−∞ as t → ∞ if x(t) /∈ Wβ for all t, which contradicts with

the fact that V (·) > 0. Thus any trajectory of (1) starting

from X enters into Wβ in a finite time.

(iii) Because V
(

x(t)
)

is monotonically nonincreasing and

bounded from below by zero, it converges as t → ∞. Now,
∫ t

t0

x̄(τ)T Qx̄(τ)dτ ≤ V (x(t)) − V (x(t0)).

Therefore, limt→∞

∫ t

t0
x̄(τ)T Qx̄(τ)dτ exists and is finite.

Since x̄(t) is bounded, f(x̄, ū) is bounded and uniformly

in t, for all t ≥ t0. Hence, x̄(t) are uniformly continuous in

t on [t0,∞). Consequently, x̄T Qx̄ is uniformly continuous

in t on [t0,∞), since x̄T Qx̄ is uniformly continuous in x̄ on

the compact set Wβ ∼ Ω. Therefore, by Barbalat’s Lemma,

we conclude that x̄T Qx̄ → 0 as t → ∞. In other words,

x̄ → 0 and x → Ω as t → ∞. Thus, Ω is attractive for the

nonlinear system (1).

(iv) Since V (x) is continuous at x ∈ Wβ and V (x) = 0 for

all x ∈ Ω, there exists η (η < r) such that ‖x − y‖ < η,

∀y ∈ Ω̄, implies V (x) < β. Consequently,

‖x(0) − y‖ < η ⇒ V
(

x(0)
)

< β

⇒ V
(

x(t)
)

< β ⇒ ‖x(t) − y‖ < r, ∀y ∈ Ω̄.

Thus, the set Ω is robustly exponentially stable for the

controlled system (1). 2

Note that stability is guaranteed due to the feasibility of

the computed control action at each sampling time. Hence,

optimality is not necessary to guarantee stability. Moreover,

we derive that at each sampling time we can compute an

initial feasible solution based on the solution obtained at

the previous sampling time, and this initial state is a hot

start for the optimization problem. This allows to relax the

computational burden of the optimization problem.

Corollary 1: Suppose that Assumptions 1 and 2 are satis-

fied and the optimal control problem P(x(t0)) is feasible at

time t = 0. Then, for a sufficient small sampling time δ > 0,

with the control (5), the closed-loop system is input-to-state

stable (ISS).

Proof: By Lemma 2, we know that

E
(

v(t + δ)
)

− E
(

v(t)
)

≤ −θE
(

v(t)
)

+
θµ

λ
‖w(t)‖2

∞,

where θ = 1 − e−λδ > 0, and v = x − x̄.

Define M(x) = V (x) + E(v), with (iii) of Lemma 3, we

can get that

M
(

x(t + δ)
)

− M
(

x(t)
)

≤ −α(x) + β(w),

where α(x) = θE
(

(x−x̄)(t)
)

−
[

x̄(t)T Qx̄(t)+ū(t)T Rū(t)
]

and β(w) = θµ
λ
‖w(t)‖2

∞. Obviously, α(·) and β(·) are K

functions. Furthermore, in virtue of the definition of E(·)
and V (·) we have that

0 ≤ M(x) ≤ π(x),

where π(·) is a K function. Thus, the optimal cost M(x) is

an input-to-state stability Lyapunov function, and the closed-

loop system is ISS [23, 24]. 2

Remark 3.6: If the disturbance is decaying with time ,

Corollary 1 guarantees that the closed-loop system is asymp-

totically stable, and the origin is its equilibrium point.

IV. ILLUSTRATIVE EXAMPLE

Consider the nonlinear system
{

ẋ1 = 0.5x1 + 0.15x2
1 + x2 + 0.6u

ẋ2 = x1 − 0.2x2
2 + 0.6u + w.

Assume that x1 and x2 are measurable. We consider the

following input constraints −2 ≤ u ≤ 2. The disturbance is

bounded by w ∈ W
.
= {w ∈ R|‖w‖∞ ≤ 0.1}. The penalty

matrices Q and R are chosen as Q =

[

0.5 0
0 0.5

]

, R =

1. Both the terminal control law and terminal penalty are

yielded by the solution of a convex optimization prob-

lem, see [25], as κ(x) =
[

−1.4496 0.3091
]

x, F (x) =

xT

[

13.4654 −11.0235
−11.0235 35.0655

]

x. The robust invariant set is

Ω = {x|xT Px < 1} with P = 10−3 ×

[

2.3907 1.7277
1.7277 1.2950

]

.

The ancillary control law, given by the feedback matrix

K =
[

−24.9562 −18.7641
]

, guarantees that the set Ω is a

robust invariant set for the error system (4). The horizon

length of the optimization problem is Tp = 18 and the

sampling time δ is 0.075. Figure 1 shows the states of the

considered system with the disturbance w = 0.095. The

dashed line shows the trajectory of the nominal system,

and the solid line shows the trajectory of the actual system.

As can be seen, the trajectories of the actual system under

persistent disturbance remain in the “robust invariant sets”

around the nominal trajectory, and x̄ = 0 while the system

state x(t) ∈ 0
⊕

Ω. Furthermore, the system state remains

in the set 0
⊕

Ω.

V. CONCLUSION

A robustly stabilizing model predictive control (MPC) al-

gorithm with guaranteed recursive feasibility is developed for

state and input constrained nonlinear systems with persistent

disturbance. The control signal is specified in terms of both

nominal control action and ancillary control law. The optimal

control problem that is solved online includes the initial state

of the model as a decision variable. The ancillary control law

is designed to maintain the state of the error systems within a

prescribed ellipsoid in the presence of unknown but bounded

disturbances, and the nominal control action drives the center

of these ellipsoids to a desired reference state. The results

are illustrated by a numerical example.
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Fig. 1. State trajectories of the example system starting from the initial condition x0 = [0.95 − 0.95].
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